Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 336
Filtrar
1.
Aquat Toxicol ; 257: 106459, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36857871

RESUMO

With large amounts of cephalosporin end up in natural ecosystems, water has been acknowledged as the large reservoir of ß-lactam resistance over the past decades. However, there is still insufficient knowledge available on the function of the living organisms to the transmission of antibiotic resistance. For this reason, in this study, using adult zebrafish (Danio rerio) as animal model, exposing them to environmentally relevant dose of cefotaxime for 150 days, we asked whether cefotaxime contamination accelerated ß-lactam resistance in gut microbiota as well as its potential transmission. Results showed that some of ß-lactam resistance genes (ßRGs) were intrinsic embedded in intestinal microbiome of zebrafish even without antibiotic stressor. Across cefotaxime treatment, the abundance of most ßRGs in fish gut microbiome decreased apparently in the short term firstly, and then increased with the prolonged exposure, forming distinctly divergent ßRG profiles with antibiotic-untreated zebrafish. Meanwhile, with the rising concentration of cefotaxime, the range of ßRGs' host-taxa expanded and the co-occurrence relationships of mobile genetics elements (MGEs) with ßRGs intensified, indicating the enhancement of ßRGs' mobility in gut microbiome when the fish suffered from cefotaxime contamination. Furthermore, the path of partial least squares path modeling (PLS-PM) gave an integral assessment on the specific causality of cefotaxime treatment to ßRG profiles, showing that cefotaxime-mediated ßRGs variation was most ascribed to the alteration of MGEs under cefotaxime stress, followed by bacterial community, functioning both direct influence as ßRG-hosts and indirect effects via affecting MGEs. Finally, pathogenic bacteria Aeromonas was identified as the critical host for multiple ßRGs in fish guts, and its ß-lactam resistance increased over the duration time of cefotaxime exposure, suggesting the potential spreading risks for the antibiotic-resistant pathogens from environmental ecosystems to clinic. Overall, our finding emphasized cefotaxime contamination in aquatic surroundings could enhance the ß-lactam resistance and its transmission mobility in fish bodies.


Assuntos
Bactérias , Cefotaxima , Microbioma Gastrointestinal , Resistência beta-Lactâmica , Cefotaxima/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Peixe-Zebra/microbiologia , Poluentes Químicos da Água/toxicidade , Resistência beta-Lactâmica/efeitos dos fármacos , Resistência beta-Lactâmica/genética , Sequências Repetitivas Dispersas/genética , Bactérias/efeitos dos fármacos , Bactérias/genética , Animais , Aeromonas/efeitos dos fármacos , Aeromonas/genética
2.
Nature ; 613(7943): 375-382, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599987

RESUMO

Broad-spectrum ß-lactam antibiotic resistance in Staphylococcus aureus is a global healthcare burden1,2. In clinical strains, resistance is largely controlled by BlaR13, a receptor that senses ß-lactams through the acylation of its sensor domain, inducing transmembrane signalling and activation of the cytoplasmic-facing metalloprotease domain4. The metalloprotease domain has a role in BlaI derepression, inducing blaZ (ß-lactamase PC1) and mecA (ß-lactam-resistant cell-wall transpeptidase PBP2a) expression3-7. Here, overcoming hurdles in isolation, we show that BlaR1 cleaves BlaI directly, as necessary for inactivation, with no requirement for additional components as suggested previously8. Cryo-electron microscopy structures of BlaR1-the wild type and an autocleavage-deficient F284A mutant, with or without ß-lactam-reveal a domain-swapped dimer that we suggest is critical to the stabilization of the signalling loops within. BlaR1 undergoes spontaneous autocleavage in cis between Ser283 and Phe284 and we describe the catalytic mechanism and specificity underlying the self and BlaI cleavage. The structures suggest that allosteric signalling emanates from ß-lactam-induced exclusion of the prominent extracellular loop bound competitively in the sensor-domain active site, driving subsequent dynamic motions, including a shift in the sensor towards the membrane and accompanying changes in the zinc metalloprotease domain. We propose that this enhances the expulsion of autocleaved products from the active site, shifting the equilibrium to a state that is permissive of efficient BlaI cleavage. Collectively, this study provides a structure of a two-component signalling receptor that mediates action-in this case, antibiotic resistance-through the direct cleavage of a repressor.


Assuntos
Antibacterianos , Staphylococcus aureus , Resistência beta-Lactâmica , beta-Lactamas , Humanos , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Resistência beta-Lactâmica/efeitos dos fármacos , beta-Lactamas/química , beta-Lactamas/farmacologia , Microscopia Crioeletrônica , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Staphylococcus aureus/metabolismo
3.
Braz. j. biol ; 83: 1-7, 2023. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468889

RESUMO

The objective of this study was to evaluate the effectiveness of common antibiotics against different microorganisms in apparently healthy cattle in Shandong province and its suburb. A total of 220 nasal swab samples were collected and cultured for bacteriological evaluation. All the bacteria isolates after preliminary identification were subjected to antibiogram studies following disc diffusion method. It was found in the study that E. coli is the most commonly associated isolate (21%), followed by Klebsiella spp. (18%), Pseudomonas aeruginosa (13%), Salmonella spp. (15%), Shigella spp (12%), and Proteus spp (11%). While the antibiogram studies reveled that highest number of bacterial isolates showed resistance to Ampicillin (95%), followed by Augmentin (91%), Cefuroxime (85%) and Tetracycline (95%) of (Escherichia coli and Klebsiella spp). In the case of pseudomonas spp. and Salmonella the highest resistance was showed by Ampicillin (90%) followed by Amoxicillin + Clavulanic Acid (80%), Cefixime (90%), and Erythromycin (80%). In Shigella spp and Salmonella spp highest resistance was showed by Amoxicillin, Ceftazidime, Augmentin (60%), and Amoxicillin + Clavulanic Acid (50%). It is concluded that in vitro antibiogram studies of bacterial isolates revealed higher resistance for Ampicillin, Augmentin, Cefuroxime, Cefixime, Tetracycline, Erythromycin, and Amoxicillin + Clavulanic Acid. The high multiple Antibiotics resistance indexes (MARI) observed in all the isolates in this study ranging from 0.6 to 0.9. MARI value of >0.2 is suggests multiple antibiotic resistant bacteria and indicate presence of highly resistant bacteria.


O objetivo deste estudo foi avaliar a eficácia dos antibióticos comuns contra diferentes microrganismos em bovinos aparentemente saudáveis na província de Shandong e seus subúrbios. Um total de 220 amostras de esfregaço nasal foi coletado e cultivado para avaliação bacteriológica. Todos os isolados de bactérias após identificação preliminar foram submetidos a estudos de antibiograma seguindo o método de difusão em disco. Verificou-se no estudo que E. coli é o isolado mais comumente associado (21%), seguido por Klebsiella spp. (18%), Pseudomonas aeruginosa (13%), Salmonella spp. (15%), Shigella spp (12%) e Proteus spp (11%). Enquanto os estudos de antibiograma revelaram que o maior número de isolados bacterianos apresentou resistência à Ampicilina (95%), seguido por Augmentin (91%), Cefuroxima (85%) e Tetraciclina (95%) de (Escherichia coli e Klebsiella spp). No caso de Pseudomonas spp. e Salmonella, a maior resistência foi apresentada pela Ampicilina (90%) seguida pela Amoxicilina + Ácido Clavulânico (80%), Cefixima (90%) e Eritromicina (80%). Em Shigella spp e Salmonella spp, a maior resistência foi demonstrada por Amoxicilina, Ceftazidima, Augmentina (60%) e Amoxicilina + Ácido Clavulânico (50%). Conclui-se que estudos de antibiograma in vitro de isolados bacterianos revelaram maior resistência para Ampicilina, Augmentina, Cefuroxima, Cefixima, Tetraciclina, Eritromicina e Amoxicilina + Ácido Clavulânico. Os altos índices de resistência a antibióticos múltiplos (MARI) observados em todos os isolados neste estudo variaram de 0,6 a 0,9. O valor MARI de > 0,2 sugere várias bactérias resistentes a antibióticos e indica a presença de bactérias altamente resistentes.


Assuntos
Animais , Bovinos , Farmacorresistência Bacteriana , Resistência a Múltiplos Medicamentos , Resistência beta-Lactâmica/efeitos dos fármacos
4.
Microbiol Spectr ; 10(1): e0201921, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35171032

RESUMO

In the current scenario of antibiotic resistance magnification, new weapons against top nosocomial pathogens like Pseudomonas aeruginosa are urgently needed. The interplay between ß-lactam resistance and virulence is considered a promising source of targets to be attacked by antivirulence therapies, and in this regard, we previously showed that a peptidoglycan recycling blockade dramatically attenuated the pathogenic power of P. aeruginosa strains hyperproducing the chromosomal ß-lactamase AmpC. Here, we sought to ascertain whether this observation could be applicable to other ß-lactamases. To do so, P. aeruginosa wild-type or peptidoglycan recycling-defective strains (ΔampG and ΔnagZ) harboring different cloned ß-lactamases (transferable GES, VIM, and OXA types) were used to assess their virulence in Galleria mellonella larvae by determining 50% lethal doses (LD50s). A mild yet significant LD50 increase was observed after peptidoglycan recycling disruption per se, whereas the expression of class A and B enzymes did not impact virulence. While the production of the narrow-spectrum class D OXA-2 entailed a slight attenuation, its extended-spectrum derivatives OXA-226 (W159R [bearing a change of W to R at position 159]), OXA-161 (N148D), and principally, OXA-539 (D149 duplication) were associated with outstanding virulence impairments, especially in recycling-defective backgrounds (with some LD50s being >1,000-fold that of the wild type). Although their exact molecular bases remain to be deciphered, these results suggest that mutations affecting the catalytic center and, therefore, the hydrolytic spectrum of OXA-2-derived enzymes also drastically impact the pathogenic power of P. aeruginosa. This work provides new and relevant knowledge to the complex topic of the interplay between the production of ß-lactamases and virulence that could be useful to build future therapeutic strategies against P. aeruginosa. IMPORTANCE Pseudomonas aeruginosa is one of the leading nosocomial pathogens whose growing resistance makes the development of therapeutic options extremely urgent. The resistance-virulence interplay has classically aroused researchers' interest as a source of therapeutic targets. In this regard, we describe a wide array of virulence attenuations associated with different transferable ß-lactamases, among which the production of OXA-2-derived extended-spectrum ß-lactamases stood out as a dramatic handicap for pathogenesis, likely as a side effect of mutations causing the expansion of their hydrolytic spectrums. Moreover, our results confirm the validity of disturbing peptidoglycan recycling as a weapon to attenuate P. aeruginosa virulence in class C and D ß-lactamase production backgrounds. In the current scenario of dissemination of horizontally acquired ß-lactamases, this work brings out new data on the complex interplay between the production of specific enzymes and virulence attenuation that, if complemented with the characterization of the underlying mechanisms, will likely be exploitable to develop future virulence-targeting antipseudomonal strategies.


Assuntos
Peptidoglicano/efeitos dos fármacos , Peptidoglicano/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Cefalosporinase , Transferência Genética Horizontal , Proteínas de Membrana Transportadoras , Testes de Sensibilidade Microbiana , Mariposas , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Virulência/efeitos dos fármacos , Resistência beta-Lactâmica/efeitos dos fármacos , Resistência beta-Lactâmica/genética
5.
Sci Rep ; 11(1): 24004, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907348

RESUMO

Insects are now well recognized as biologically relevant alternative hosts for dozens of mammalian pathogens and they are routinely used in microbial pathogenesis studies. Unfortunately, these models have yet to be incorporated into the drug development pipeline. The purpose of this work was to begin to evaluate the utility of orange spotted (Blaptica dubia) cockroaches in early antibiotic characterization. To determine whether these model hosts could exhibit mortality when infected with bacteria that are pathogenic to humans, we subjected B. dubia roaches to a range of infectious doses of Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, and Acinetobacter baumannii to identify the medial lethal dose. These results showed that lethal disease did not develop following infection of high doses of S. aureus, and A. baumannii. However, cockroaches infected with E. coli and K. pneumoniae succumbed to infection (LD50s of 5.82 × 106 and 2.58 × 106 respectively) suggesting that this model may have limitations based on pathogen specificity. However, because these cockroaches were susceptible to infection from E. coli and K. pneumoniae, we used these bacterial strains for subsequent antibiotic characterization studies. These studies suggested that ß-lactam antibiotic persistence and dose was associated with reduction of hemolymph bacterial burden. Moreover, our data indicated that the reduction of bacterial CFU was directly due to the drug activity. Altogether, this work suggests that the orange-spotted cockroach infection model provides an alternative in vivo setting from which antibiotic efficacy can be evaluated.


Assuntos
Bactérias , Infecções Bacterianas , Baratas/microbiologia , Resistência beta-Lactâmica , Animais , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/genética , Infecções Bacterianas/metabolismo , Modelos Animais de Doenças , Humanos , Resistência beta-Lactâmica/efeitos dos fármacos , Resistência beta-Lactâmica/genética
6.
Genes (Basel) ; 12(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34828256

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) infections represent a difficult clinical treatment issue. Recently, a novel phenotype was discovered amongst selected MRSA which exhibited enhanced ß-lactam susceptibility in vitro in the presence of NaHCO3 (termed 'NaHCO3-responsiveness'). This increased ß-lactam susceptibility phenotype has been verified in both ex vivo and in vivo models. Mechanistic studies to-date have implicated NaHCO3-mediated repression of genes involved in the production, as well as maturation, of the alternative penicillin-binding protein (PBP) 2a, a necessary component of MRSA ß-lactam resistance. Herein, we utilized RNA-sequencing (RNA-seq) to identify genes that were differentially expressed in NaHCO3-responsive (MRSA 11/11) vs. non-responsive (COL) strains, in the presence vs. absence of NaHCO3-ß-lactam co-exposures. These investigations revealed that NaHCO3 selectively repressed the expression of a cadre of genes in strain 11/11 known to be a part of the sigB-sarA-agr regulon, as well as a number of genes involved in the anchoring of cell wall proteins in MRSA. Moreover, several genes related to autolysis, cell division, and cell wall biosynthesis/remodeling, were also selectively impacted by NaHCO3-OXA exposure in the NaHCO3-responsive strain MRSA 11/11. These outcomes provide an important framework for further studies to mechanistically verify the functional relevance of these genetic perturbations to the NaHCO3-responsiveness phenotype in MRSA.


Assuntos
Bicarbonatos/farmacologia , Farmacorresistência Bacteriana Múltipla , Staphylococcus aureus Resistente à Meticilina , beta-Lactamas/farmacologia , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , RNA-Seq , Regulon/efeitos dos fármacos , Regulon/genética , Resistência beta-Lactâmica/efeitos dos fármacos , Resistência beta-Lactâmica/genética
7.
J Med Microbiol ; 70(10)2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34672922

RESUMO

Introduction. Antibiotic use, particularly amoxicillin-clavulanic acid in dairy farming, has been associated with an increased incidence of AmpC-hyperproducing Escherichia coli.Gap statement. There is limited information on the incidence of AmpC-hyperproducing E. coli from seasonal pasture-fed dairy farms.Aim. We undertook a New Zealand wide cross-sectional study to determine the prevalence of AmpC-producing E. coli carried by dairy cattle.Methodology. Paddock faeces were sampled from twenty-six dairy farms and were processed for the selective growth of both extended-spectrum beta-lactamase (ESBL)- and AmpC-producing E. coli. Whole genome sequence analysis was carried out on 35 AmpC-producing E. coli.Results. No ESBL- or plasmid mediated AmpC-producing E. coli were detected, but seven farms were positive for chromosomal mediated AmpC-hyperproducing E. coli. These seven farms were associated with a higher usage of injectable amoxicillin antibiotics. Whole genome sequence analysis of the AmpC-producing E. coli demonstrated that the same strain (<3 SNPs difference) of E. coli ST5729 was shared between cows on a single farm. Similarly, the same strain (≤15 SNPs difference) of E. coli ST8977 was shared across two farms (separated by approximately 425 km).Conclusion. These results infer that both cow-to-cow and farm-to-farm transmission of AmpC-producing E. coli has occurred.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Escherichia coli/veterinária , Escherichia coli/enzimologia , Fezes/microbiologia , beta-Lactamases/metabolismo , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Bovinos , Estudos Transversais , Indústria de Laticínios , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/transmissão , Fazendas , Genoma Bacteriano/genética , Genótipo , Prevalência , Resistência beta-Lactâmica/efeitos dos fármacos , Resistência beta-Lactâmica/genética , beta-Lactamases/genética
8.
Appl Biochem Biotechnol ; 193(12): 3867-3876, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34524633

RESUMO

Carbapenem-resistant Acinetobacter baumannii (CRAB) has been a common pathogen of nosocomial infections and severely threatened the public health for decades. Tigecycline is a new type of antibacterial glycylcycline and minocycline derivative and has been used to treat CRAB in clinical practice. However, the synergistic effects of tigecycline in combination with other antibiotics including colistin or amikacin remain unclear. A total of 216 CRAB isolates were collected from multiple body parts of different patients. The gene types of these isolates were analyzed and their resistance to carbapenems was determined by Etest. Broth microdilution method was utilized to evaluate the minimum inhibitory concentration (MIC) of each sample. Checkerboard screening technique was performed to demonstrate the synergistic effects of antibiotics and fractional inhibitory concentration index (FICI) was established. Therefore, the joint treatment of tigecycline and colistin (1:1) could effectively improve the sensitivity of AB to antibiotics. OXA-24-like isolates were more sensitive to the combination of tigecycline and amikacin. On the other hand, OXA-23-like isolates were more sensitive to the combination of tigecycline and colistin. Tigecycline exhibited synergistic effects with amikacin and colistin to inhibit CRAB.


Assuntos
Acinetobacter baumannii/crescimento & desenvolvimento , Amicacina/farmacologia , Carbapenêmicos , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Tigeciclina/farmacologia , Resistência beta-Lactâmica/efeitos dos fármacos , Amicacina/agonistas , Colistina/agonistas , Sinergismo Farmacológico , Tigeciclina/agonistas
9.
Rev. cuba. med. trop ; 73(2): e503, 2021. tab, graf
Artigo em Espanhol | LILACS, CUMED | ID: biblio-1347482

RESUMO

Introdución: Las ß-lactamasas AmpC son enzimas con capacidad hidrolítica, pueden ser de tipo constitutivo o inducible. No existe un método estandarizado para su determinación fenotípica por normas internacionales; la detección de estas mediante el uso de la biología molecular podría ser una alternativa útil para vigilancia y control de la diseminación de clones circulantes en el entorno hospitalario. Objetivo: Determinar el fenotipo de resistencia y genes expresados en la producción de ß-lactamasas AmpC en bacilos gramnegativos de aislados clínicos en un centro hospitalario. Métodos: Estudio observacional, descriptivo y de corte transversal. Se seleccionaron 78 cepas bacterianas como portadoras de ß- lactamasas AmpC. Se les realizó prueba de aproximación de disco; a las cepas con resultado positivo se seleccionaron para extracción de ADN y PCR multiplex para detección de 6 familias genes AmpC. Se determinó la frecuencia por tipo de muestra, servicio y comparación con el perfil de susceptibilidad. Resultados: De las cepas seleccionadas con fenotipo AmpC, el 57,6 por ciento (45/78) se consideró caso confirmado ß-lactamasas AmpC por su positividad para la prueba confirmatoria. La técnica molecular utilizada confirmó en el 40 por ciento (18/45) la presencia de genes AmpC. Se obtuvo con mayor frecuencia el gen MIR n= 9 (20 por ciento), seguido de DHA n= 7 (15 por ciento). Conclusiones: La detección oportuna de genes que codifican para ß-lactamasas AmpC permite establecer estrategias para evitar la circulación mediada por plásmidos en hospitales, así como utilizar mejores opciones terapéuticas que no induzcan a otros mecanismos de resistencia(AU)


Introduction: AmpC ß--lactamases are enzymes with hydrolytic activity. They may be either constitutive or inducible. No standardized method is available for their phenotypical determination by international standards. Their detection by molecular biology could be a useful alternative for the surveillance and control of the spread of clones circulating in hospital environments. Objective: Determine the resistance phenotype and genes expressed in the production of AmpC ß-lactamases in Gram-negative bacilli from clinical isolates in a hospital. Methods: An observational descriptive cross-sectional study was conducted. A total 78 bacterial strains were selected as carriers of AmpC ß-lactamases. Disc approximation tests were performed. The strains testing positive were selected for DNA extraction and multiplex PCR for detection of six AmpC gene families. Determination was made of the frequency per sample type, service and comparison with the susceptibility profile. Results: Of the strains selected with AmpC phenotype, 57.6 percent (45/78) were considered to be AmpC β-lactamase confirmed cases, due to their positive confirmatory test. The molecular technique used confirmed the presence of AmpC genes in 40 percent (18/45) of the cases. The gene most commonly obtained was MIR n= 9 (20 percent), followed by DHA n= 7 (15 percent). Conclusions: Timely detection of genes encoding for AmpC ß-lactamases makes it possible to set up strategies to prevent plasmid-mediated circulation in hospitals, as well as apply better therapeutic options that do not induce other resistance mechanisms(AU)


Assuntos
Humanos , Masculino , Feminino , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência beta-Lactâmica/efeitos dos fármacos , Reação em Cadeia da Polimerase Multiplex , Biologia Molecular , Epidemiologia Descritiva , Estudos Transversais , Colômbia , Genes/fisiologia
10.
ACS Appl Mater Interfaces ; 13(26): 30434-30457, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34161080

RESUMO

In the face of the abundant production of various types of carbapenemases, the antibacterial efficiency of imipenem, seen as "the last line of defense", is weakening. Following, the incidence of carbapenem-resistant Acinetobacter baumannii (CRAB), which can generate antibiotic-resistant biofilms, is increasing. Based on the superior antimicrobial activity of silver nanoparticles against multifarious bacterial strains compared with common antibiotics, we constructed the IPM@AgNPs-PEG-NOTA nanocomposite (silver nanoparticles were coated with SH-PEG-NOTA as well as loaded by imipenem) whose core was a silver nanoparticle to address the current challenge, and IPM@AgNPs-PEG-NOTA was able to function as a novel smart pH-sensitive nanodrug system. Synergistic bactericidal effects of silver nanoparticles and imipenem as well as drug-resistance reversal via protection of the ß-ring of carbapenem due to AgNPs-PEG-NOTA were observed; thus, this nanocomposite confers multiple advantages for efficient antibacterial activity. Additionally, IPM@AgNPs-PEG-NOTA not only offers immune regulation and accelerates tissue repair to improve therapeutic efficacy in vivo but also can prevent the interaction of pathogens and hosts. Compared with free imipenem or silver nanoparticles, this platform significantly enhanced antibacterial efficiency while increasing reactive oxygen species (ROS) production and membrane damage, as well as affecting cell wall formation and metabolic pathways. According to the results of crystal violet staining, LIVE/DEAD backlight bacterial viability staining, and real-time quantitative polymerase chain reaction (RT-qPCR), this silver nanocomposite downregulated the levels of ompA expression to prevent formation of biofilms. In summary, this research demonstrated that the IPM@AgNPs-PEG-NOTA nanocomposite is a promising antibacterial agent of security, pH sensitivity, and high efficiency in reversing resistance and synergistically combatting carbapenem-resistant A. baumannii. In the future, various embellishments and selected loads for silver nanoparticles will be the focus of research in the domains of medicine and nanotechnology.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/uso terapêutico , Portadores de Fármacos/química , Nanocompostos/uso terapêutico , Prata/uso terapêutico , Acinetobacter baumannii/fisiologia , Animais , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Feminino , Compostos Heterocíclicos com 1 Anel/química , Imipenem/química , Imipenem/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Nanocompostos/química , Polietilenoglicóis/química , Espécies Reativas de Oxigênio/metabolismo , Prata/química , Resistência beta-Lactâmica/efeitos dos fármacos
11.
Ann Clin Microbiol Antimicrob ; 20(1): 45, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34134705

RESUMO

BACKGROUND: A complex cascade of genes, enzymes, and transcription factors regulates AmpC ß-lactamase overexpression. We investigated the network of AmpC ß-lactamase overexpression in Klebsiella aerogenes and identified the role of AmpG in resistance to ß-lactam agents, including cephalosporins and carbapenems. METHODS: A transposon mutant library was created for carbapenem-resistant K. aerogenes YMC2008-M09-943034 (KE-Y1) to screen for candidates with increased susceptibility to carbapenems, which identified the susceptible mutant derivatives KE-Y3 and KE-Y6. All the strains were subjected to highly contiguous de novo assemblies using PacBio sequencing to investigate the loss of resistance due to transposon insertion. Complementation and knock-out experiments using lambda Red-mediated homologous recombinase and CRISPR-Cas9 were performed to confirm the role of gene of interest. RESULTS: In-depth analysis of KE-Y3 and KE-Y6 revealed the insertion of a transposon at six positions in each strain, at which truncation of the AmpG permease gene was common in both. The disruption of the AmpG permease leads to carbapenem susceptibility, which was further confirmed by complementation. We generated an AmpG permease gene knockout using lambda Red-mediated recombineering in K. aerogenes KE-Y1 and a CRISPR-Cas9-mediated gene knockout in multidrug-resistant Klebsiella pneumoniae-YMC/2013/D to confer carbapenem susceptibility. CONCLUSIONS: These findings suggest that inhibition of the AmpG is a potential strategy to increase the efficacy of ß-lactam agents against Klebsiella aerogenes.


Assuntos
Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Cefalosporinas/farmacologia , Proteínas de Membrana Transportadoras/genética , Resistência beta-Lactâmica/genética , beta-Lactamas/farmacologia , Sequência de Aminoácidos , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas , Elementos de DNA Transponíveis , República Democrática Popular da Coreia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Humanos , Klebsiella pneumoniae/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Mutagênese , Alinhamento de Sequência , Resistência beta-Lactâmica/efeitos dos fármacos
12.
Diagn Microbiol Infect Dis ; 101(1): 115422, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34111650

RESUMO

This study characterized the mechanisms of carbapenem resistance in gram-negative bacteria isolated from patients in Yola, Nigeria. Whole genome sequencing (WGS) was performed on 66 isolates previously identified phenotypically as carbapenem-non-susceptible. The patterns of beta-lactamase resistance genes identified were primarily species-specific. However, blaNDM-7 and blaCMY-4 were detected in all Escherichia coli and most Providencia rettgeri isolates; blaNDM-7 was also detected in 1 Enterobacter cloacae. The E. coli and E. cloacae isolates also shared blaOXA-1, while blaOXA-10 was found in all P. rettgeri, one Pseudomonas aeruginosa and 1 E. coli. Except for Stenotrophomonas maltophilia isolates, which only contained blaL1, most species carried multiple beta-lactamase genes, including those encoding extended-spectrum beta-lactamases, AmpC and OXA in addition to a carbapenemase gene. Carbapenemase genes were either class B or class D beta-lactamases. No carbapenemase gene was detected by WGS in 13.6% of isolates.


Assuntos
Carbapenêmicos/farmacologia , Genoma Bacteriano/genética , Bactérias Gram-Negativas/genética , Resistência beta-Lactâmica/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Nigéria , Resistência beta-Lactâmica/efeitos dos fármacos , beta-Lactamases/genética
13.
Pathology ; 53(6): 763-767, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33958177

RESUMO

There is limited literature examining the accuracy of the VITEK 2 Advanced Expert System (AES) in characterisation of ß-lactamase resistance patterns. We present a prospective single centre study to better ascertain the performance characteristics of this program. The VITEK 2 AES interpretation was compared to established laboratory phenotypic methods. The overall sensitivity for detection of broad-spectrum ß-lactamase by the AES was 95%, with a specificity of 78%. One or more discrepancies were noted in 36% of samples, with the majority of these (87/100) due to incorrect 'overcall' of a resistance mechanism. AES characterisation of AmpC resistance mechanisms was excellent. In contrast, the AES had poor specificity in classifying extended spectrum ß-lactamases (ESBLs). As a screening aid, the AES can be a valuable tool. However, optimal use requires an adequate working knowledge of resistance mechanisms in order to correctly interpret and accept the result output.


Assuntos
Antibacterianos/farmacologia , Enterobacteriaceae/patogenicidade , Sistemas Especialistas , beta-Lactamases/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/efeitos dos fármacos , Hospitais , Humanos , Resistência beta-Lactâmica/efeitos dos fármacos
14.
ACS Synth Biol ; 10(6): 1292-1299, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33983709

RESUMO

Bacterial transduction particles were critical to early advances in molecular biology and are currently experiencing a resurgence in interest within the diagnostic and therapeutic fields. The difficulty of developing a robust and specific transduction reagent capable of delivering a genetic payload to the diversity of strains constituting a given bacterial species or genus is a major impediment to their expanded utility as commercial products. While recent advances in engineering the reactivity of these reagents have made them more attractive for product development, considerable improvements are still needed. Here, we demonstrate a synthetic biology platform derived from bacteriophage P1 as a chassis to target transduction reagents against four clinically prevalent species within the Enterobacterales order. Bacteriophage P1 requires only a single receptor binding protein to enable attachment and injection into a target bacterium. By engineering and screening particles displaying a diverse array of chimeric receptor binding proteins, we generated a potential transduction reagent for a future rapid phenotypic carbapenem-resistant Enterobacterales diagnostic assay.


Assuntos
Bacteriófago P1/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Infecções por Enterobacteriaceae/diagnóstico , Engenharia Genética/métodos , Proteínas da Cauda Viral/genética , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Infecções por Enterobacteriaceae/microbiologia , Ertapenem/farmacologia , Testes de Sensibilidade Microbiana/métodos , Fenótipo , Biologia Sintética/métodos , Transdução Genética/métodos , Resistência beta-Lactâmica/efeitos dos fármacos , Resistência beta-Lactâmica/genética
15.
J Med Chem ; 64(9): 6310-6328, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33913328

RESUMO

Pseudomonas aeruginosa, a major cause of nosocomial infections, is considered a paradigm of antimicrobial resistance, largely due to hyperproduction of chromosomal cephalosporinase AmpC. Here, we explore the ability of 6-pyridylmethylidene penicillin-based sulfones 1-3 to inactivate the AmpC ß-lactamase and thus rescue the activity of the antipseudomonal ceftazidime. These compounds increased the susceptibility to ceftazidime in a collection of clinical isolates and PAO1 mutant strains with different ampC expression levels and also improved the inhibition kinetics relative to avibactam, displaying a slow deacylation rate and involving the formation of an indolizine adduct. Bromide 2 was the inhibitor with the lowest KI (15.6 nM) and the highest inhibitory efficiency (kinact/KI). Computational studies using diverse AmpC enzymes revealed that the aromatic moiety in 1-3 targets a tunnel-like site adjacent to the catalytic serine and induces the folding of the H10 helix, indicating the potential value of this not-always-evident pocket in drug design.


Assuntos
Imunidade Inata/efeitos dos fármacos , Penicilinas/química , Penicilinas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Sulfonas/química , Resistência beta-Lactâmica/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Desenho de Fármacos , Cinética , Testes de Sensibilidade Microbiana , beta-Lactamases
16.
ChemMedChem ; 16(13): 2106-2111, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33783142

RESUMO

Hymeglusin, a previously known eukaryotic hydroxymethylglutaryl-CoA (HMG-CoA) synthase inhibitor, was identified as circumventing the ß-lactam drug resistance in methicillin-resistant Staphylococcus aureus (MRSA). We describe the concise total syntheses of a series of natural products, which enabled determination of the absolute configuration of fusarilactone A and provided structure-activity relationship information. Based on previous reports, we speculated that the target protein of this circumventing effect may be MRSA bacterial HMG-CoA synthase (mvaS). We found that this enzyme was dose-dependently inhibited by hymeglusin. Furthermore, overexpression of the MRSA mvaS gene and site-directed mutagenesis studies suggested its binding site and the mechanism of action.


Assuntos
Antibacterianos , Ácidos Graxos , Staphylococcus aureus Resistente à Meticilina , Pironas , Humanos , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Resistência beta-Lactâmica/efeitos dos fármacos , Relação Dose-Resposta a Droga , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pironas/síntese química , Pironas/química , Pironas/farmacologia , Relação Estrutura-Atividade , Ácidos Graxos/síntese química , Ácidos Graxos/química , Ácidos Graxos/farmacologia
17.
Appl Environ Microbiol ; 87(10)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33712420

RESUMO

The emergence and spread of extended-spectrum ß-lactamases (ESBLs), metallo-ß-lactamases (MBLs), or variant low-affinity penicillin-binding proteins (PBPs) pose a major threat to our ability to treat bacterial infection using ß-lactam antibiotics. Although combinations of ß-lactamase inhibitors with ß-lactam agents have been clinically successful, there are no MBL inhibitors in current therapeutic use. Furthermore, recent clinical use of new-generation cephalosporins targeting PBP2a, an altered PBP, has led to the emergence of resistance to these antimicrobial agents. Previous work shows that natural polyphenols such as cranberry-extracted proanthocyanidins (cPAC) can potentiate non-ß-lactam antibiotics against Gram-negative bacteria. This study extends beyond previous work by investigating the in vitro effect of cPAC in overcoming ESBL-, MBL-, and PBP2a-mediated ß-lactam resistance. The results show that cPAC exhibit variable potentiation of different ß-lactams against ß-lactam-resistant Enterobacteriaceae clinical isolates as well as ESBL- and MBL-producing E. coli We also discovered that cPAC have broad-spectrum inhibitory properties in vitro on the activity of different classes of ß-lactamases, including CTX-M3 ESBL and IMP-1 MBL. Furthermore, we observe that cPAC selectively potentiate oxacillin and carbenicillin against methicillin-resistant but not methicillin-sensitive staphylococci, suggesting that cPAC also interfere with PBP2a-mediated resistance. This study motivates the need for future work to identify the most bioactive compounds in cPAC and to evaluate their antibiotic-potentiating efficacy in vivoIMPORTANCE The emergence of ß-lactam-resistant Enterobacteriaceae and staphylococci compromises the effectiveness of ß-lactam-based therapy. By acquisition of ESBLs, MBLs, or PBPs, it is highly likely that bacteria may become completely resistant to the most effective ß-lactam agents in the near future. In this study, we described a natural extract rich in proanthocyanidins which exerts adjuvant properties by interfering with two different resistance mechanisms. By their broad-spectrum inhibitory ability, cranberry-extracted proanthocyanidins could have the potential to enhance the effectiveness of existing ß-lactam agents.


Assuntos
Ampicilina/farmacologia , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Cefotaxima/farmacologia , Proantocianidinas/farmacologia , Vaccinium macrocarpon , Bactérias/crescimento & desenvolvimento , Sinergismo Farmacológico , Resistência beta-Lactâmica/efeitos dos fármacos
18.
Pharm Res ; 38(1): 27-35, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33404990

RESUMO

PURPOSE: Although flomoxef (FMOX) has attracted substantial attention as an antibiotic against extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-producing E. coli), the pharmacokinetics/pharmacodynamics (PK/PD) characteristics of FMOX against ESBL-producing E. coli is unclear. The aim of this study was to determine the PK/PD index of FMOX against ESBL-producing E. coli. METHODS: In vitro time-kill curve studies and in vivo PK/PD experiments were carried out. RESULTS: Time-kill curves exhibited a unique bactericidal activity: time-dependent activity at low concentrations and concentration-dependent activity at high concentrations. In neutropenic murine thigh infection experiments, the antibacterial activity of FMOX correlated with the time that the free drug concentration remaining above the minimum inhibitory concentration (MIC) (fT>MIC) and the ratio of the area under the free drug concentration-time curve for a 24 h period to the MIC (fAUC24/MIC). However, the burden of ESBL producing E. coli significantly reduced when the time intervals for administration were shorter among three dosage regimens with same magnitude of fAUC24/MIC, indicating that fT>MIC is significant PK/PD index. The target value of fT>MIC for 1 log10 kill reduction was 35.1%. CONCLUSIONS: fT>MIC is the most significant PK/PD index of FMOX against ESBL-producing E. coli and its target value is ≥ 40%.


Assuntos
Cefalosporinas/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Animais , Área Sob a Curva , Cefalosporinas/uso terapêutico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Escherichia coli/enzimologia , Infecções por Escherichia coli/microbiologia , Feminino , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Resistência beta-Lactâmica/efeitos dos fármacos , beta-Lactamases/metabolismo
19.
Microb Drug Resist ; 27(3): 342-349, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32762605

RESUMO

Very few antimicrobial agents remain active against Pseudomonas aeruginosa and Klebsiella pneumoniae in some geographic regions. We evaluated the in vitro activity of ceftazidime-avibactam, ceftolozane-tazobactam, and comparator agents against 6,210 P. aeruginosa and 6,041 K. pneumoniae isolates consecutively collected from 85 U.S. medical centers across 37 states in 2016-2018. Antimicrobial susceptibility was determined by reference broth microdilution method. K. pneumoniae isolates found to have elevated MICs for broad-spectrum cephalosporins were submitted to whole-genome sequencing analysis to detect resistance genes. Ceftazidime-avibactam (97.1% susceptible [S]) and ceftolozane-tazobactam (97.0%S) were the most active compounds against P. aeruginosa and retained activity against meropenem-nonsusceptible (88.5-89.0%S), piperacillin-tazobactam-nonsusceptible (86.6-87.0%S), and other resistant subsets of isolates. The most active agents against K. pneumoniae per CLSI criteria were ceftazidime-avibactam (>99.9%S), amikacin (98.4%S), and meropenem (97.1%S). Ceftolozane-tazobactam was active against 95.3% of K. pneumoniae but showed limited activity against extended-spectrum ß-lactamase and carbapenemase producers (82.9% and 0.0%S, respectively).


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Amicacina/farmacologia , Compostos Azabicíclicos/farmacologia , Ceftazidima/farmacologia , Cefalosporinas/farmacologia , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Klebsiella pneumoniae/genética , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Fenótipo , Combinação Piperacilina e Tazobactam/farmacologia , Pseudomonas aeruginosa/genética , Tazobactam/farmacologia , Estados Unidos , Sequenciamento Completo do Genoma , Resistência beta-Lactâmica/efeitos dos fármacos , Resistência beta-Lactâmica/genética
20.
Microb Drug Resist ; 27(4): 450-461, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32830997

RESUMO

Extended-spectrum ß-lactamase (ESBL)-producing Gram-negative bacteria (GNB) are increasingly identified as the cause of both community and healthcare-associated urinary tract infections (UTIs), with CTX-Ms being the most common ESBLs identified. CTX-M-producing GNB are resistant to most ß-lactam antibiotics and are frequently multidrug-resistant, which limits treatment options. Rapid diagnostic tests that can detect ESBL-producing GNB, particularly CTX-M producers, in the urine of patients with UTIs are needed. Results from such a test could direct the selection of appropriate antimicrobial therapy at the point-of-care (POC). In this study, we show that a chromogenic, dual enzyme-mediated amplification system (termed DETECT [dual-enzyme trigger-enabled cascade technology]) can identify CTX-M-producing GNB from unprocessed urine samples in 30 minutes. We first tested DETECT against a diverse set of recombinant ß-lactamases and ß-lactamase-producing clinical isolates to elucidate its selectivity. We then tested DETECT with 472 prospectively collected clinical urine samples submitted for urine culture to a hospital clinical microbiology laboratory. Of these, 118 (25%) were consistent with UTI, 13 (11%) of which contained ESBL-producing GNB. We compared DETECT results in urine against a standard phenotypic method to detect ESBLs, and polymerase chain reaction and sequencing for CTX-M genes. DETECT demonstrated 90.9% sensitivity and 97.6% specificity (AUC, 0.937; 95% confidence interval, 0.822-1.000), correctly identifying 10 of 11 urine samples containing a clinically significant concentration of CTX-M-producing GNB (including Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis). Our results demonstrate the clinical potential of DETECT to deliver diagnostic information at the POC, which could improve initial antibiotic selection.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Sistemas Automatizados de Assistência Junto ao Leito , Infecções Urinárias/microbiologia , Resistência beta-Lactâmica/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Urina/microbiologia , beta-Lactamases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...